
In Fig. I, results of calculation from Eq, (18) for the velocity of isotherm propagation 
are compared with experimental data. As is evident from Fig. I, the discrepancy is no more 
than 2-5%, which indicates that the assumption s made abovel are valid. The use of Eq. (18) 
with constant G v offers the possibility of determining the heating of the zone H in the form 

H= AH .... % (19)  

where AH/To is the velocity of isotherm propagation. 

NOTATION 

P, pressure, N/m=; T, temperature, ~ Uv, vapor saturation of medium, m3/m3; Ow, satu- 
ration of medium with water; rp , heat of phase transition, J/kg; E, porosity; c~, specific 

heat of Sand, J/kg'K; c~, specific heat of medium, J/kg'K; c~, specific heat of vapor; Gv~ 
vapor flow rate, kg/m='sec; 0 v, vapor density, kg/m3; Pw, water density, kg/m3; Vv, specific 
volume of vapor, m-a; gp, flux-density of phase-transition material; kg/m3"sec; T, time, 
sec; ~, molecular weight; To, heating time of condensate uP to T; v, rate of growth of 
heated zone, m/sec. 
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A THEORY OF BINARY LIQUID MIXTURE EVAPORATION 

FROM CAPILLARIES 

N. I. Gamayunov, L. A. Uvarova, 
V. L. Malyshev, and A. S. Fel'dblyum 

UDC 536.423.1:532.66 

A theory of binary liquid mixture evaporation from capillaries is developed. 
Expressions defining mixture composition and the law of meniscus motion during 
evaporation are obtained. 

We will consider isothermal evaporation of binary mixtures from capillaries. Because 
of the brevity of the diffusion relaxation time in the gas phase as compared to the evapora- 
tion time, the component vapor flows will be regarded as steady state for any position of 
the moving meniscus. It is assumed that molecules of each mixture component can experience 
a phase transition on the liquid-gas boundary. The gas mixture into which evaporation occurs 
consists of molecules of the volatile mixture components and molecules of a gas which is 
chemically inert with respect to the components. The liquid surface is assumed impermeable 
to vapor--gas mixture molecules. 

In the general case, during evaporation of liquid mixtures there is a constant change 
in mixture composition due to the differing volatilities of the components. We will assume 
that the volumes occupied by the components are additive: 

MI , M~ v= W-TT) .  (1) 

~"ne content of the first component is defined by the law of conservation of mass in the 
form 
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dMt miO,S. (2) 

The change in mass of the second component is determined by the equation of total mass 
balance 

dm 
- - -  = m,G,S '-- ,n2OrS. (3) 

dt 

At an arbitrary time the masses M, and M can be represented in the form 

M1 = p, (t -- l) S, (4) 

M = p C L - - I )  S. (5) 

The relationship between p, and p= can be formulated from gqs. (I), (4), (5) in the fol- 
lowing manner : 

Pl P-* = ,oW+  (6) 

Then the  s o l u t i o n  d e n s i t y  can be r e l a t e d  to  the  v a r y i n g  d e n s i t y  o f  one o f  the  components :  

! ") p=o~+p~  o 1 - ~  . (7) 

With cons idera t ion  of  Eq. (7) ,  we t ransform system (2 ) - (5 )  and obta in  equations fo r  the den- 
s i t y  o f  one of  the mixture components as a func t ion  of  meniscus coord inate ,  and a lso the law 
fo r  motion of  the in terphase boundary: 

where 

K,, o~ (8) dpl 

I + K ~  ~,Pi 

dl Glm, ~G~n2 ' P~ 1' 

dt . L ' 

Glml 
G,m, +. G2m.,. 

Equations (8), (9) can be integrated in quadratures with the assumption that at any 
moment in time a homogeneous component density distribution over capillary length is estab- 
lished: 

,'~ l - K , l  : ' - - i  
:o_L =:,n( L 

.o,'; Ktp~--pt---K,o~ ~ p~ - - 1 )  \ L - - l  / '  

t d l  

l=p". o (Otm~+Gd,~) 14-K,~p0 --I 

(lO) 

(ll) 

Equations (I0), (II) allow determination of the binary mixture liquid phase composition 
and the law of meniscus motion during evaporation. The applicability of these equations is 
not limited to any particular evaporation regime, and the values of the vapor flux densities 
G, and Ga can be specified from the conditions of the particular problem. 

We will consider the case where the pressure of the gas mixture in the capillary is con- 
stant, which corresponds to Stefan flow of the vapor molecules. The quantities G, and G= can 
be found using the system of equations [I] 

O.c~ -- G,c= _ O:._._Ls = _ dc__ L 
9 

nDI, nD,3 dx 

G, cs - -  G,c, G=c.~s = __ dc.__~= 
9 

nD,= riD= dx 

(~2) 
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Ca ( G1 _~. Ge ") ~ dca 
n ~,-ff~3 D~s / dx (14) 

Boundary conditions are taken as follows: 

e l ( 0  ) = Cl0, C1(/) =C15 , ( 1 5 )  

c~. (0) ~ c2o, c~(l) -- c~. (16) 

The r e l a t i v e  c o n c e n t r a t i o n s  o f  m o l e c u l e s  i n  the  vapor - -gas  m i x t u r e  a r e  i n t e r r e l a t e d  by 
the  c o n d i t i o n  

C x + C ~ + C a =  1. (17) 

Then,  i n t e g r a t i n g  Eqs.  ( 1 2 ) - ( 1 4 )  w i t h  c o n s i d e r a t i o n  o f  Eqs .  ( 1 5 ) - ( 1 7 ) ,  we o b t a i n  a s y s t e m  o f  
equations defining G~ and Ga: 

Gfl _z. [ Gll 

C a l  , , Da~ ~, ca, . 

c3~D,.Glt ( ! 1 ] 
. . . .  ~ D13 Dm ., 

G~l (1 DIsD%3" ) ~ n (D'-a-  D12) \ I c'~& ]. 
_ D**. k c ~  1 nDl~ D~3 

i ,) 
D12c'~z6*l (Dis -- Dt~ , 

, --Cls --~- O, 

-L ('1 Din ' ( C:~! ' 
Cfl D.,3 "t --  n (D.,~ - -  DI*.) In ca, i (18) 

G., = nD~3 in "( eao "I- Do, Gi . 
t c.~z J D3~ (19) 

The equations obtained take on their simplest form in the case where binary diffusion 
coefficients have similar values, i.e., Dx= ~DIs~D~,~D. In this case 

G l =  ( nD ' l  clscso c,r In ~'~". 
(20) 

CaD - -  Cal ~3I 

G~ ~- [ n D  ~ c~,ca~ - -  c2oc.~ z In %" (2 ! ) 
t ] Ca~- -C3t  c~t 

I t  can  be shown t h a t  the  q u a n t i t i e s  G, and Ga have  a s i m i l a r  fo rm when t r u e  d i f f u s i o n  
c o e f f i c i e n t s  a r e  r e p l a c e d  by e f f e c t i v e  ones  [2,  3 ] .  I n  t h e  e a s e  where  Czs + Czs << 1 Eqs.  
( 1 8 ) ,  (19) t r a n s f o r m  to  t he  c o r r e s p o n d i n g  e x p r e s s i o n s  o b t a i n e d  f rom F i c k ' s  law.  I f  one o f  
t h e  r e I a t i v e  c o n c e n t r a t i o n s  o f  t he  m i x t u r e  components  i s  t a k e n  e q u a l  t o  z e r o  ( f o r  e x a m p l e ,  
c a ) ,  t h e n  Eq. ( 1 8 )  t r a n s f o r m s  to  t he  w e l l  known c a s e  o f  e v a p o r a t i o n  o f  a p u r e  l i q u i d  [4 ] .  

Dur ing  e v a p o r a t i o n  o f  l i q u i d  m i x t u r e s  change  i n  component  C o n c e n t r a t i o n  w i t h i n  t h e  s o l u -  
t i o n  can  o c c u r ,  which  l e a d s  i n  t u r n  to  change  i n  t he  s a t u r a t e d  v a p o r  p r e s s u r e  a b o v e  t h e  m e n i s -  
c u s .  The r e l a t i v e  v a p o r  c o n c e n t r a t i o n s  above  an i d e a l  s o l u t i o n  f o l l o w  R a u l ' s  l aw:  

Pz 

~i (22) = = c L p ;  + , 

l** Ix, - 

~pz 

- c L No = c L " Pl ~ Pz ( 2 3 )  

We now substitute Eqs. 
Eqs. (7), (22), (23): 

(20) , .  (21) i n  Eq. (8) and  solve the same with consideration of 
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Fig. I.  Fig. 2. 

Fig. I. Change in density of more volatile 
component versus dimensionless capillary 
length during mixture evaporation: I) 0,o/ 
pO ffi 0 .9 ;  2 ) 0 . 8 ;  3) 0 .7;  4) 0.55.  

Fig .  2. Meniscus coord ina te  versus time ( I - 4 ,  
see Fig .  I) ; ,f{, sec .  

�9 i 

' 

I ~ Pl._._s ~, Pl / I i 

O~ / ,  

(24) 

= c ~ I:c~ -- C~s). In writing the last equation, a simplifying assumption was made, where y 2six *s 
which does not limit generality of the results, that the mixture vapor content in the sur- 
rounding gas is negligibly small, i.e., C,o = C2o = 0. 

Equation (24) can be used to establish the relationship between the density of one of 
the mixture components as it varies during evaporation and the meniscus coordinate. As an 
example, Fig. l shows the curve p,(1) in dimensionless form, obtained by numerical solution 
of Eq. (24). It was assumed that the more volatile component would be studied (7 ffi 0.0|). 

The expressions obtained permit use of Eq. (11) to determine the meniscus motion law 
l(t). Figure 2 shows relative meniscus coordinate versus time for the cases considered in 
Fig. I. The calculations were performed for equal binary diffusion coefficients (D - 0.! 
cm2/sec) at T = 323~ for p~ - 0~ " 0.7"I0" (kg/mS), ~2 = 200 (kg/mole), ~, = I00 (kg/mole). 

As follows from Fig. 2, evaporation does not follow the Stefan law in these cases. How- 
ever, the speed of meniscus motion is less than the evaporation rate of the more volatile 
component in pure form, which is caused by a reduction in concentration of vapor of the latter 
above the surface due to the presence of the second component. As the first component con- 
tinues to evaporate there is a sharp reduction in the speed of the process, which tends 
asymptotically to the corresponding value for the pure second, less volatile, component. 

With consideration of conditions (22), (23), Eqs. (8), (9), obtained above, transform 
to the corresponding expressions of [5], which were obtained by using Fick's laws to study 
evaporation of binary mixtures with one component practically nonvolatile. As was shown in 
[5], the difference between theoretical and experimental data does not exceed 4%. 

NOTATION 

V, liquid phase volume, ms; M,, M2, masses of first and second components in liquid 
phase, kg; p ~ , pO, density of first and second components in pure form at specified tempera- 
ture, kg/mS; t, time, sec; m,, map molecular mass of first and second components, kg; G,, G2, 
molecular flow density of first and second components, I/m2"sec; p,, Pa, mean densities of 
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components forming mixture at arbitrary time, kg/m3; L, total capillary length, m; ~, cur- 
rent meniscus coordinate, m; Plo, initial density of first component, kg/m~; ci, relative 
molecular concentration of vapor components (i = I, 2) and external gas (i = 3) per unit 
volume of vapor gas mixture; Dij, binary diffusion coefficient in vapor--gas phase, m2/sec; 
x, spatial coordinate, m; Clo, cao, relative mol~cular concentrations of vapor components in 
surrounding gas at initial time: Cls, C2s, relative concentrations of first and second com- 
ponents above meniscus; c3o, c3~, relative molecular concentration of gas forming; atmosphere 
into which evaporation occurs; C~s, o c2s, relative molecular concentrations of vapors of first 
and second components for pure liquids; NI, N2, molar fractions of first and second compo- 
nents; ~ and ~2, molar masses for first and second components, kg/mole. 
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EFFECT OF ICE SURFACE ORIENTATION ON INTENSITY OF WATER- 

TO-ICE HEAT TRANSFER I~NDER FREE CONVECTION CONDITIONS 

E. S. Gogolev and A. N. Krasavin UDC 531.468.1:536.24 

A graphical construction permitting determination of the heat-transfer coefficient 
for various slopes of an ice surface is proposed. 

Heat transfer between water and frozen ground is the main factor causing damage to water 
reservoirs in regions where the ground does not freeze for years at a time. To predict fail- 
ure of retaining dams it is necessary to have data characterizing the intensity of thermal 
processes on the water-frozen soil boundary, in particular, heat-transfer coefficient values. 

The profile of the retaining wall may vary greatly, so to simplify calculations it can 
be approximated by a collection of individual inclined segments. The problem of thermal 
calculation then reduces to determination of the heat transfer from the water to an inclined 
plane surface having a negative temperature. In the process of thermal interaction with 
frozen ground, melting of ice occurs with subsequent removal of the water formed due to a 
density difference, i.e., the aggregate state of the ice changes and the liquid phase thus 
produced is removed under the action of free convection. 

At the present time the Soviet and foreign literature provides a number of studies of 
heat transfer to inclined plane surfaces [I-4], but in those studies heat transfer took place 
with no change in aggregate state of the material. Without considering this factor results 
in elevated results [5]. Nor is it possible to use results from studies of ice melting with 
ice specimens in the form of spheres [5-7], cylinders [5], cubes [8], or horizontal surfaces 
[9, I0], since under free convection conditions the form of the surface has a great effect on 
heat transfer [I]. Only for the rarely found case of a perpendicular retaining wall can data 
on heat transfer between water and a vertical ice plate [I]-14] be used with assurance. 

In studying heat transfer on a water--ice boundary, aside from change in the aggregate 
state of the ice, another factor producing difficulty is the change in water density with 
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